Теоретический анализ основных математических понятий

Страница 1

Понятие произведения целых неотрицательных чисел может быть определено по-разному. Рассмотрим сначала подход, в основе которого лежит понятие суммы.

Определение. Произведением целых неотрицательных чисел а и b называется такое целое неотрицательное число а·b, которое удовлетворяет следующим условиям:

1) а·b = а + а + . + а при b > 1;

b слагаемых

2) а·1=а при b = 1;

3) а·0 = 0 при b = 0 [19,270].

Теоретико-множественный смысл этого определения следующий. Если множества А1, A2, ., Аb имеют по a элементов каждое и никакие два из них не пересекаются, то их объединение содержит а·b элементов. Следовательно, произведение a·b – это число элементов в объединении b попарно непересекающихся множеств, каждое из которых содержит по а элементов. Равенства а·1=а и а·0=0 принимаются по условию.

Действие, при помощи которого находят произведение чисел а и b, называют умножением; числа, которые умножают, называют множителями.

Произведение любых целых неотрицательных чисел существует, и оно единственно.

С данным определением учащиеся знакомятся в начальных классах. Смысл его раскрывается при решении простых задач.

Рассмотрим, например, такую задачу: «На каждое детское пальто нужно пришить 4 пуговицы. Сколько пуговиц нужно пришить на 6 таких пальто?»

Почему она решается при помощи умножения? Потому, что в ней требуется найти число элементов в объединении, состоящем из 6 множеств, в каждом из которых по 4 элемента. Согласно определению это число находится умножением: 4·6 = 24 (пуговицы).

Имеется и другое определение произведения целых неотрицательных чисел. Оно связано с декартовым произведением множеств.

Пусть даны два множества: А={х, у, z} и В = {n, t, r, s}. Найдем их декартово произведение, которое запишем в виде прямоугольной таблицы:

(х, n), (х, t), (х, r), (х, s),

(y, n), (у, t), (у, r), (у, s),

(z, n), (z, t), (z, r), (z, s).

В каждой строке таблицы все пары имеют одинаковую первую компоненту, а в каждом столбце одинаковая вторая компонента. При этом никакие две строки не имеют хотя бы одной одинаковой пары. Отсюда следует, что число элементов в декартовом произведении АхВ равно 3+3+3+3=12. С другой стороны, n(А) = 3, n(В) = 4 и 3·4 = 12. Видим, что число элементов в декартовом произведении данных множеств А и В равно произведению n(А)·n(В).

Вообще если А и В – конечные множества, то

n(А х В)=n(А) х n(В).

Таким образом, произведение целых неотрицательных чисел а и b можно рассматривать как число элементов декартова произведения множеств А и В, где n(А)=а, n(В)=b:

a·b = n(А х В),

где n(А) = а, n(В) = b

И в первом, и во втором случае нами определено произведение двух чисел. А как определить произведение нескольких множителей?

Пусть произведение двух множителей определено и определено произведение n множителей. Тогда произведение, состоящее из n+1 множителя, т. е. произведение a1 · a2 · . · аn · аn+1, равно (a1 · a2 · . · an) · an+1.

Например, чтобы найти произведение 2·7·5·9 согласно этому определению, надо выполнить последовательно следующие преобразования:

2·7·5·9 = (2·7·5)·9 = ((2·7)·5)·9 = (14·5)·9 = 70·9 = 630.

Докажем переместительный закон умножения через декартово произведение множеств.

Переместительный закон: для любых целых неотрицательных чисел a и b справедливо равенство a·b = b·a.

Пусть a = n(А), b = n(В). Тогда по определению произведения

a·b = n(А*В).

Но множества А*В и В*А равномощны: каждой паре (a, b) из множества А*В можно поставить соответствие единственную пару (b, a) из множества В*А, и наоборот. Значит,

n(А*В) = n(В*А),

и поэтому a·b = n(А*В) = n(В*А) = b·a.

Страницы: 1 2 3


Читайте также:

Описание фрагментов воспитательных занятий
Знания детей о нравственных нормах, полученные на занятиях, во время экскурсий, из собственных жизненных наблюдений, нередко бывают разрозненными и неполными. Для обобщения знаний о нравственности я провожу беседы по разнообразной тематике. Это беседы о товариществе и дружбе, о честности, трудолюби ...

Анализ объема и содержания обучения учащихся в программах образовательной области "Технология"
Образовательная область "Технология" является одной из содержательных областей учебного плана общеобразовательных учреждений. Ее введение обусловлено объективно существующей в обществе потребностью в трудовом становлении подрастающего поколения. Она имеет особое значение для полноценного ...

Организация и методика проведения обследования темпо – ритмических нарушений
Для правильного выбора необходимых форм коррекционного воздействия на заикающегося, прогнозирования эффективности логопедической работы с ним, большое значение имеют данные психолого-педагогического изучения заикающегося ребенка. С психолого-педагогического изучения фактически начинается логопедиче ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru