В процессе решения уравнений также используется понятие логического следования, которое изучается позже понятия равносильности и является дополнением к нему. Методика работы с понятием логического следования имеет много общих черт с методикой изучения равносильности и равносильных преобразований. Нередко в практике работы учителей логическое следование применяется как прием, упрощающий процесс решения, если сохранение равносильности может быть достигнуто сравнительно "дорогой ценой" [14, 111].
Среди неравносильных преобразований есть преобразования, не являющиеся логическим следованием. Например, переход к рассмотрению частного случая (пример: переход от уравнения и рассматривать как практические приемы, позволяющие сосредоточить внимание на отдельных шагах процесса решения уравнения).
Можно выделить три основных типа таких преобразование:
Преобразование одной из частей уравнения.
Согласованное преобразование обеих частей уравнения.
Преобразование логической структуры.
Преобразования первого типа используются при необходимости упрощения выражения в какой-то из частей уравнения. Например, решая уравнение можно пытаться заменить выражение в левой части более простым. В данном случае соответствующее преобразование приводит к уравнению
, неравносильному исходному за счет изменения области определения. Возможность получения при такой замене уравнения, неравносильного данному, приходится учитывать при изучении некоторых типов уравнений, например тригонометрических или логарифмических.
В классе дробно-рациональных уравнений с этим явлением приходится сталкиваться гораздо реже. Здесь это связано с возможностью потери корней при сокращении дробей. Наконец, в классе целых алгебраических уравнений рассматриваемый тип преобразований всегда приводит к уравнениям, равносильным данным.
Преобразования второго типа состоят в согласованном изменении обеих частей уравнения в результате применения к ним арифметических действий или элементарных функций. Преобразования второго типа сравнительно многочисленны. Они составляют ядро материала, изучаемого в линии уравнений.
Приведем примеры преобразований этого типа.
Прибавление к обеим частям уравнения одного и того же выражения.
Умножение (деление) обеих частей уравнения на одно и того же выражения.
Переход от уравнения а = b к уравнению f (a) =f (b), где f - некоторая функция, или обратный переход.
К третьему типу преобразований относятся:
преобразования, осуществляемые на основе свойств арифметических операций. К ним можно отнести переход от уравнения к совокупности уравнений после предварительного разложения на множители; переход от уравнения к системе после приравнивания суммы квадратов выражений к нулю; почленное сложение, умножение, деление уравнений, неравенств и т.д.
преобразования, осуществляемые при помощи логических операций. Примерами их являются выделение из системы одного из компонентов, замена переменных.
Таким образом, владение содержанием линии уравнений позволяет расширить список выполнимых преобразований.
В итоге изучения материала линий уравнений учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.
Читайте также:
Теории мышления в психологии. Развитие мышления
Рассмотрим наиболее известные теории, объясняющие процесс мышления. Их можно разделить на две большие группы: те, которые исходят из гипотезы о наличии у человека природных, не изменяющихся под влиянием жизненного опыта интеллектуальных способностей, и те, в основу которых положено представление о ...
Разные подходы к проблеме адаптации
Период привыкания детей – неизменно сложная проблема, отмечает С. Теплюк. С ней сразу же столкнулись работники первых яслей, открывшихся еще на заре советской власти. Заботясь о здоровье и самочувствии детей в этот трудный для них период, медицинские работники начали разрабатывать щадящие режимы со ...
Профессиональная переподготовка и рост мастерства специалиста социальной
работы
Все это должно учитываться во время прохождения курсов, направленных на повышение своего опыта, но социальный работник, также как и учитель, не только проходит курсы повышения квалификации и проблемные курсы, но и проходит аттестацию. На основании положения Министерства образования Российской Федер ...