Методика изучения табличных случаев умножения и деления

Страница 7

Работа по запоминанию таблицы умножения и деления должна начинаться на том же уроке, где она составлена. При этом предполагается, что заучиваться должна только первая из четырех, а результат в остальных дети будут быстро и уверенно получать на основе результата первой таблицы и соответствующих правил независимостей.

Например, если 3·4=12, то 4·3=12, т.к. от перестановки множителей произведение не меняется. 12:3=4 и 12:4=3, т.к. если произведение 12 разделим на первый множитель 3. то получим второй множитель 4, а если разделим на второй множитель 4, то получим первый множитель 3.

Однако, как показывает практика и результаты проверок, дети достаточно часто успешно усваивают первую таблицу, а результаты остальных, особенно таблиц деления, находят с большим трудом.

Такое положение выдвигает проблему поиска путей совершенствования методики работы по заучиванию табличных случаев умножения и деления.

Целесообразно при работе с таблицей, ориентировать детей на обязательное заучивание первого столбика, учить их как, зная результат первого столбика, получить результаты остальных в данной строчке, и даже практиковать построчное заучивание.

Следует обратить внимание на то, что учитель в процессе работы по заучиванию таблицы должен вести систематический контроль и учет того, как каждый ребенок продвигается в ее усвоении. Для этого практически на каждом уроке должна быть организована работа тренировочного характера. Задания, предлагаемые детям, должны отличаться разнообразием и способствовать включению в работу всех детей класса. Необходимо использовать приемы, формы работы, способствующие поддержанию интереса детей, а также различные средства обратной связи.

При этом учитель должен осуществлять необходимую практическую помощь детям, особенно на первых порах. Некоторые столбики таблицы, большие по количеству случаев для запоминания, трудно заучить в один прием. В этом случае надо заучивать его по частям, причем точно определить, сколько случаев выучить сегодня, сколько – завтра. Нужно давать и практические советы, как заучивать (прочитать, попробовать записать, забыв, – прочитай и запомни, закрой ответы, повтори и т. д.).

Для проверки усвоения таблицы целесообразно использовать и различные формы проверки: фронтальный опрос, математический диктант, перфокарты, карточки с математическими заданиями, игры и др.

По мере усвоения таблицы при проверке следует учитывать и уровень ее запоминания:

– вначале дается время для вычислений;

– затем даются упражнения с ограничением времени (проверяется автоматизм усвоения) [4,51-52].

После изучения всех таблиц умножения рассматриваются случаи умножения и деления с нулем.

Сначала вводится случай умножения нуля на любое число (0·5, 0·2, 0·7). Результат учащиеся находят сложением (0·2=0+0, 0·3=0+0+0=0). Решив ряд аналогичных примеров, ученики замечают, что при умножении нуля на любое число получается нуль. Этим правилом они в дальнейшем и руководствуются.

Если второй множитель равен нулю, то результат нельзя найти сложением, нельзя использовать и перестановку множителей, так как это новая область чисел, в которой переместительное свойство умножения не раскрывалось. Поэтому второе правило: «Произведение любого числа на нуль считают равным нулю» – учитель просто сообщает детям.

Затем оба эти правила применяются при выполнении различных упражнений на вычисления.

Деление нуля на любое число, не равное нулю (0:6), рассматривается на основе связи между компонентами и результатом деления. Ученики рассуждают так: чтобы 0 разделить на 6, надо найти число, при умножении которого на 6 получится 0. Это нуль, так как 0·6=0. Значит, 0:6=0. В результате решения ряда аналогичных примеров ученики замечают, что при делении нуля на любое число, не равное нулю, частное равно нулю. В дальнейшем учащиеся пользуются этим правилом.

Как известно, делить на нуль нельзя. Этот факт сообщается детям и поясняется на примере: нельзя 8 разделить на 0, так как нет такого числа, при умножении которого на 0 получится 8.

Необходимо чаще включать в тренировочные упражнения случаи умножения и деления с числами 0 и 1, сравнивая соответствующие приемы (5·0 и 5·1), чтобы предупредить смешение [4,103].

Как правило, учащиеся любого класса различаются по характеру, способностям, интеллектуальному развитию и, естественно, разному темпу работы. При коллективной, групповой работе или работе в парах медлительным детям проще: у них есть возможность поразмыслить в то время, когда другие ученики предлагают свои суждения, доказательства, варианты решения предложенных заданий. Однако при самостоятельной работе или при выполнении заданий, направленных на отработку вычислительного навыка усвоения табличных случаев умножения и соответствующих случаев деления медлительные дети испытывают затруднения и неловкость: когда они еще только осмысливают задание, другие ученики уже сообщают о завершении работы над ним. Поэтому ученика, который работает медленно, учитель постоянно торопит или ребенок спешит сам, услышав или увидев, что другие дети уже закончили работу. Естественно, страдает качество работы. Ученики, которые закончили работу, в лучшем случае получают от учителя дополнительное задание, не связанное с предыдущим, в худшем – просто ждут, когда другие выполнят задания.

Страницы: 2 3 4 5 6 7 8 9


Читайте также:

Методы и организация исследований
Для решения поставленных задач были использованы следующие методы: 1. Анализ и обобщение данных научно-методической литературы; 2. Тестирование для выявления плоскостопия; 3. Методы тестирования физической подготовленности; 4. Организация исследования; В исследовании применялись разработанные метод ...

Качество знаний и его основные параметры
В процессе обучения должна контролироваться реализация всех трех функций процесса обучения, что и является содержанием проверки. Под качеством знаний понимается «степень удовлетворения ожиданий» различных участников процесса образования от предоставляемых образовательным учреждениям образовательных ...

Самостоятельная работа учащихся на уроке - лекции
Лекция в арсенале педагога может стать активной формой обу­чения, так как она способна сочетаться с самыми разнообразны­ми видами самостоятельной работы, причем не отдельных учащих­ся, а всего класса. Строя лекцию как поиск истины, учитель вовлекает в эту работу всех, в необходимых случаях обращает ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru