Методика изучения табличных случаев умножения и деления

Страница 2

Покажем, как это можно сделать.

Учитель предлагает решить задачу: «На каждой тарелке по 3 груши. Сколько груш на 4 тарелках?» [9,40-41].

Выполнив иллюстрации, учащиеся записывают решение: 3+3+3+3=12.

Учитель. Что можно сказать о слагаемых этой суммы?

Дети. Одинаковые.

Учитель. Сколько их?

Дети. 4.

Учитель. Здесь по 3 взяли 4 раза. Если слагаемые одинаковые, то сумму можно записать иначе: 3·4=12. Читают эту запись так: по 3 взять 4 раза, получится 12. (Дети повторяют.)

Учитель. Можно прочитать по-другому: 3 умножить на 4, получится 12. Здесь выполним действие умножения. Сложение одинаковых слагаемых называют умножением. (Дети повторяют.)

Учитель. Умножение обозначают знаком – точкой.

Учитель. Что показывает в этой записи число 3?

Дети. Число 3 берется слагаемым.

Учитель. Что показывает число 4?

Дети. Сколько раз взяли слагаемым число 3.

Затем выполняется несколько упражнений на замену суммы произведением. При этом дети устанавливают, что показывает каждое число в новой записи.

Очень важно, чтобы учащиеся поняли, при каких условиях возможна замена суммы произведением и когда она невозможна. Этому помогает решение примеров с одинаковыми и разными слагаемыми.

На доске пример: 15+15+15.

Учитель. Замените пример на сложение примером на умножение.

Дети. 15·3.

Учитель. Можно ли пример 22+22+28 заменить примером на умножение?

Дети. Нельзя.

Учитель. Почему?

Дети. Слагаемые разные. Слагаемые неодинаковые.

Учитель. Всегда ли можно пример на сложение заменить примером на умножение?

Дети. Не всегда.

Учитель. В каких случаях это сделать можно?

Дети. Когда слагаемые одинаковые.

Далее вводится первый вычислительный прием нахождения произведения, основанный на конкретном случае умножения, – это замена произведения суммой и выполнение сложения. Например, предлагается найти результат: 6·4.

Учитель. Прочитайте пример.

Дети. 6 умножить на 4.

Учитель. Что в этой записи указывает число 6?

Дети. Это число берется слагаемым.

Учитель. Что обозначает число 4?

Дети. Сколько берется слагаемых.

Учитель. Заменим пример на умножение примером на сложение.

Запись: 6+6+6+6=24.

Надо уделить особое внимание закреплению знаний этого приема, так как в дальнейшем он используется при составлении всех таблиц умножения. С этой целью полезно научить детей вести рассуждение при замене произведения суммой по определенному плану: назвать первый множитель и сказать, какое число берется слагаемым; назвать второй множитель и сказать, сколько надо взять таких слагаемых; вычислить сумму. Например, вычисляя произведение 5·3, дети рассуждают: первое число (первый множитель) 3, следовательно, слагаемых будет 3; вычисляем: 5+5+5=15.

Запись: [9,42].

При вычислении некоторых сумм одинаковых слагаемых целесообразно ознакомить детей с приемом группировки слагаемых (не вводя этого термина) и использовать этот прием тогда, когда это удобно. Например, вычисляя сумму 2+2+2+2+2+2+2, надо обратить внимание детей, что сумма пяти слагаемых равна 10, а к 10 легко прибавить сумму остальных слагаемых: 10+4=14. Этот прием используется в дальнейшем при составлении таблиц умножения [8,68].

Закреплению знания конкретного смысла действия умножения и вычислительного приема, основанного на этом знании, помогают такие упражнения.

1) Сравните выражения и поставьте вместо звездочек знак « > », « < » или « = » :

8+8+8 8·2

4·5 4+4+4+4

6+6+6+6+6 6·5

1·3 1+1+1+1

2) Вычисли произведения, заменяя умножение сложением одинаковых слагаемых.

9·2 2·3 1·5 0·4 12·2

В каждом столбике найди значение второго выражения, используя значение первого.

9·2 = 18 2·6 = 12 7·4 = 28

9·3 = 2·7 = 7·5 =

Объясни, разными способами, на сколько клеток разбит прямоугольник.

Страницы: 1 2 3 4 5 6 7


Читайте также:

Опытно-экспериментальная работа по формированию этнокультуры дошкольников средствами дидактической игры
Экспериментальная работа проводилась на базе МДОУ № 6 «Аленький цветочек» г. Йошкар-Олы. Детский сад работает по программе «Детство». В детском саду 6 групп (2 ясельные: 1-я ясельная от 1,5 до 2,5 лет,2-я ясельная от 2,5 до 3 лет; одна младшая от 3 до 4 лет; одна средняя от 4 до 5 лет; две старшие ...

Методика формирования иноязычного лексикона в соответствии с семантико-синтаксическим подходом и диалогом культур в 7 классе
Шатилов С.Ф. выделил основные этапы работы над лексикой: 1 этап - этап введения, семантизации нового слова и первичного его воспроизведения; 2 этап - этап ситуативной тренировки и создания прочных лексических речевых связей в заданных пределах в однотипных речевых ситуациях; 3 этап - варьирующий, с ...

Организация творческих занятий по предмету «Человек и мир»
При организации творческих занятий по предмету «Человек и мир» учитель должен осознавать, что ученик работает на высоком уровне (творческом, продуктивном), который предполагает: свободное оперирование программным учебным материалом с использованием сведений из других учебных курсов, из прочитанной ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru