Введение понятий вектор, матрица

Страница 3

Обозначим - доля безрисковой ц.б. в портфеле. - вектор долей первой и второй ц.б. . Тогда естественно, должно выполнятся равенство . Пусть -ожидаемая эффективность бумаг. V- матрица ковариаций ценных бумаг. -риск портфеля.

Используя введенные обозначения, поставим математическую задачу. Как отмечалось выше: . Если возвести обе части равенства (1) в квадрат и записать в матричной форме, то получим . И теперь основное: необходимо добиться максимального значения эффективности портфеля, т.е. .

1.6.2 Решение задачи

Решение задачи найдем по формуле:

.

В результате проделанных операций получим двухмерный вектор - доли рисковых акций в портфеле. Доля безрисковой акции в портфеле найдется из равенства .

Находить решение поставленной задачи удобнее разбив формулу по действиям. Если учащиеся хорошо усвоили предыдущий материал, то вычисления не вызовут ни каких затруднений, т.к. не содержат нового материла.

1.7 Седьмой урок

Напомнить результаты постановку математической задачи. Записать результ, к которому пришли на прошлом уроке. Продолжить решение.

Доли акций могут оказаться больше 1, или даже отрицательными. Если доля акции отрицательная - необходимо пройзвести операцию short sale. Суть этой операции состоит в следующем: инвестор, формирующий портфель, обязуется через какое-то время поставить бумаги i-го вида (вместе с доходом, который они принесли бы владельцу за это время). За это он сейчас получает их денежный эквивалент. Эти деньги он присоединяет к своему капиталу и покупает рекомендуемые оптимальным решением ц.б. Т.к. ценные бумаги других видов более эффективны, то инвестор оказывается в выигрыше. Можно обойтись и без операции short sale, если инвестору доступны займы денежных средств по безрисковой ставке. Тогда налагают дополнительное условие

В результате проделанной работы был составлен факультативный курс по теме "Оптимальный портфель ценных бумаг". Он позволяет учащимся профильных экономических классов глубже понять суть работы экономистов, увидеть тесную связь между математикой и экономикой, сделать профессиональный выбор. В ходе факультативных занятий школьники знакомятся с основными понятиями ТВиМС.

Факультатив содержит только необходимые для решения поставленной задачи (формирование оптимального портфеля Тобина максимальной эффективности из предложенных ценных бумаг) понятия. Однако, изученный материал позволяет сформировать у учащихся представление о ТВиМС.

Факультатив расчитан на 10, 11 профильные математические и экономические классы с высоким уровнем успеваимости. Проведенные в 10 экономическом классе МПГ №56 г.Гомеля занятия показали, что школьники способны усаваивать данный материал. Однако время уроков 2-6 необходимо увеличить до 2 академических часов.

Страницы: 1 2 3 


Читайте также:

Философские и экономические проблемы информатизации общества
Движение к информационному обществу в мире – объективный процесс, обеспечивающий формирование и развитие мирового информационного пространства, взаимосвязанное функционирование мировых товарных рынков, рынков информации и знаний, капитала и труда. Понятие «информационное общество» появилось во втор ...

Понятие, сущность, виды учебно-исследовательской деятельности старшеклассников
Под учебно-исследовательской деятельностью школьников понимается процесс решения ими научных и личностных проблем, имеющий своей целью построение субъективно нового знания [22, С.312]. Под самостоятельностью школьника в учебно-исследовательской деятельности подразумевается, что научный руководитель ...

Особенности педагогической профессии
Своеобразие педагогической профессии. Принадлежность человека к той или иной профессии проявляется в особенностях его деятельности и образе мышления. По классификации, предложенной Е.А. Климовым, педагогическая профессия относится к группе профессий, предметом которых является другой человек. Но пе ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru