Обозначим
- доля безрисковой ц.б. в портфеле.
- вектор долей первой и второй ц.б.
. Тогда естественно, должно выполнятся равенство
. Пусть
-ожидаемая эффективность бумаг. V- матрица
ковариаций ценных бумаг.
-риск портфеля.
Используя введенные обозначения, поставим математическую задачу. Как отмечалось выше:
. Если возвести обе части равенства (1) в квадрат и записать в матричной форме, то получим
. И теперь основное: необходимо добиться максимального значения эффективности портфеля, т.е.
.
1.6.2 Решение задачи
Решение задачи найдем по формуле:
.
В результате проделанных операций получим двухмерный вектор - доли рисковых акций в портфеле. Доля безрисковой акции в портфеле найдется из равенства
.
Находить решение поставленной задачи удобнее разбив формулу по действиям. Если учащиеся хорошо усвоили предыдущий материал, то вычисления не вызовут ни каких затруднений, т.к. не содержат нового материла.
1.7 Седьмой урок
Напомнить результаты постановку математической задачи. Записать результ, к которому пришли на прошлом уроке. Продолжить решение.
Доли акций могут оказаться больше 1, или даже отрицательными. Если доля акции отрицательная - необходимо пройзвести операцию short sale. Суть этой операции состоит в следующем: инвестор, формирующий портфель, обязуется через какое-то время поставить бумаги i-го вида (вместе с доходом, который они принесли бы владельцу за это время). За это он сейчас получает их денежный эквивалент. Эти деньги он присоединяет к своему капиталу и покупает рекомендуемые оптимальным решением ц.б. Т.к. ценные бумаги других видов более эффективны, то инвестор оказывается в выигрыше. Можно обойтись и без операции short sale, если инвестору доступны займы денежных средств по безрисковой ставке. Тогда налагают дополнительное условие
В результате проделанной работы был составлен факультативный курс по теме "Оптимальный портфель ценных бумаг". Он позволяет учащимся профильных экономических классов глубже понять суть работы экономистов, увидеть тесную связь между математикой и экономикой, сделать профессиональный выбор. В ходе факультативных занятий школьники знакомятся с основными понятиями ТВиМС.
Факультатив содержит только необходимые для решения поставленной задачи (формирование оптимального портфеля Тобина максимальной эффективности из предложенных ценных бумаг) понятия. Однако, изученный материал позволяет сформировать у учащихся представление о ТВиМС.
Факультатив расчитан на 10, 11 профильные математические и экономические классы с высоким уровнем успеваимости. Проведенные в 10 экономическом классе МПГ №56 г.Гомеля занятия показали, что школьники способны усаваивать данный материал. Однако время уроков 2-6 необходимо увеличить до 2 академических часов.
Читайте также:
Перечень основных недостатков социально-экономической эффективности системы
дошкольного образования г. Иркутска
Сфера образования в г. Иркутске традиционно считается затратной сферой. В разные периоды новейшей истории города предпринимались попытки изменить ситуацию, превратить сферу образования в инвестиционную. Однако, по сути, экономический фундамент образования не создавал достаточной инфраструктуры для ...
Значение спорта в воспитании личности подростка
Значение спорта в воспитании личности подростка может быть понято, если исходить из определенной научной концепции личности и ее психических свойств, а также из анализа психологических особенностей спортивной деятельности, так как определенные черты личности формируются в процессе той или иной деят ...
Организационная структура
университета
Университет самостоятельно формирует свою структуру и подразделения, необходимые для его функционирования, за исключением создания, переименования и ликвидации филиалов. Структурные подразделения Университета создаются для реализации задач и целей Университета, выполнения его функций. Статус и функ ...