Методика изучения квадратных уравнений

Страница 1

С началом изучения систематического курса алгебры основное внимание уделяется способам решения квадратных уравнений, которые становятся специальным объектом изучения. Для изучения данной темы по программе для общеобразовательных учреждений отводится 26 часов [8, 151]. Основная цель - выработать умения решать квадратные уравнения и решать задачи, сводящиеся к ним.

Квадратным уравнением называется уравнение вида bx + c = 0, где х - переменная, а, b и с - некоторые числа, причем а . Числа а, b и с - коэффициенты квадратного уравнения [1, 98].

Умение решать квадратные уравнения служит базой для решения других типов уравнений и их систем (дробных рациональных, иррациональных, высших степеней).

Для того чтобы решить любое квадратное уравнение, учащиеся должны знать:

формулу нахождения дискриминанта;

формулу нахождения корней квадратного уравнения;

алгоритмы решения уравнений данного вида.

В результате изучения данной темы учащиеся должны уметь:

решать неполные квадратные уравнения;

решать полные квадратные уравнения;

решать приведенные квадратные уравнения;

находить ошибки в решенных уравнениях и исправлять их;

делать проверку.

Решение каждого уравнения складывается из двух основных частей:

преобразования данного уравнения к простейшим;

решения уравнений по известным правилам, формулам или алгоритмам.

При изучении темы "Квадратные уравнения" рассматриваются неполные, полные и приведенные квадратные уравнения. Для изучения данной темы были проанализированы современные школьные учебники разных авторов, таких как А.Г. Мордкович, С.М. Никольский, Ю.Н. Макарычев, М.И. Башмаков (Приложение 6)

Можно сделать следующие выводы:

1) во всех современных школьных учебниках алгебры методическая линия изучения квадратных уравнений одинакова.

2) в учебнике под ред.М.И. Башмакова дается историческая справка, а в других учебниках этого нет.

3) в учебниках алгебры С.М. Никольского и Ю.Н. Макарычева при изучении темы "Квадратные уравнения" рассматриваются прямая и обратная теорема Виета.

Обучение решению уравнений начинается с простейших их видов, и программа [5,131] обусловливает постепенное накопление как их видов, так и "фонда" тождественных и равносильных преобразований, с помощью которых можно привести произвольное уравнение к простейшим. В этом направлении следует строить и процесс формирования обобщенных приемов решения уравнений в школьном курсе алгебры. В курсе математики старших классов учащиеся сталкиваются с новыми классами уравнений, систем или с углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную систему знаний, умений и навыков; они дополняют ее новым фактическим содержанием.

Обобщение способов деятельности учащихся при решении квадратных уравнений происходит постепенно. Можно выделить следующие этапы при изучении темы "Квадратные уравнения":

Страницы: 1 2 3 4 5


Читайте также:

Краткая характеристика МОУ «Средняя общеобразовательная школа №17 г. Йошкар-Олы»
Полное наименование – муниципальное образовательное учреждение «Средняя общеобразовательная школа №17 г. Йошкар-Олы». Краткое наименование - МОУ «Средняя общеобразовательная школа №17 г. Йошкар-Олы». Местонахождение: 424005, Республика Марий Эл, г. Йошкар-Ола, ул. 8 Марта, д. 19. На 01.01.2008 года ...

Профессионально-педагогическая культура учителя
Прежде чем определиться в сущности профессионально-педагогической культуры, необходимо актуализировать такие понятия, как «профессиональная культура» и «педагогическая культура». Выделение профессиональной культуры как атрибутивного свойства определенной профессиональной группы людей является резул ...

Влияние самостоятельной работы на качество знаний и развитие познавательной способности учащихся
Самостоятельная работа оказывает значительное влияние на глубину и прочность знаний учащихся по предмету, на развитие их познавательных способностей, на темп усвоения нового материала. Практический опыт учителей многих школ показал, что: 1. Систематически проводимая самостоятельная работа (с учебни ...

Актуальное на сайте

Copyright © 2020 - All Rights Reserved - www.rawpedagogy.ru