Методика изучения квадратных уравнений

Страница 1

С началом изучения систематического курса алгебры основное внимание уделяется способам решения квадратных уравнений, которые становятся специальным объектом изучения. Для изучения данной темы по программе для общеобразовательных учреждений отводится 26 часов [8, 151]. Основная цель - выработать умения решать квадратные уравнения и решать задачи, сводящиеся к ним.

Квадратным уравнением называется уравнение вида bx + c = 0, где х - переменная, а, b и с - некоторые числа, причем а . Числа а, b и с - коэффициенты квадратного уравнения [1, 98].

Умение решать квадратные уравнения служит базой для решения других типов уравнений и их систем (дробных рациональных, иррациональных, высших степеней).

Для того чтобы решить любое квадратное уравнение, учащиеся должны знать:

формулу нахождения дискриминанта;

формулу нахождения корней квадратного уравнения;

алгоритмы решения уравнений данного вида.

В результате изучения данной темы учащиеся должны уметь:

решать неполные квадратные уравнения;

решать полные квадратные уравнения;

решать приведенные квадратные уравнения;

находить ошибки в решенных уравнениях и исправлять их;

делать проверку.

Решение каждого уравнения складывается из двух основных частей:

преобразования данного уравнения к простейшим;

решения уравнений по известным правилам, формулам или алгоритмам.

При изучении темы "Квадратные уравнения" рассматриваются неполные, полные и приведенные квадратные уравнения. Для изучения данной темы были проанализированы современные школьные учебники разных авторов, таких как А.Г. Мордкович, С.М. Никольский, Ю.Н. Макарычев, М.И. Башмаков (Приложение 6)

Можно сделать следующие выводы:

1) во всех современных школьных учебниках алгебры методическая линия изучения квадратных уравнений одинакова.

2) в учебнике под ред.М.И. Башмакова дается историческая справка, а в других учебниках этого нет.

3) в учебниках алгебры С.М. Никольского и Ю.Н. Макарычева при изучении темы "Квадратные уравнения" рассматриваются прямая и обратная теорема Виета.

Обучение решению уравнений начинается с простейших их видов, и программа [5,131] обусловливает постепенное накопление как их видов, так и "фонда" тождественных и равносильных преобразований, с помощью которых можно привести произвольное уравнение к простейшим. В этом направлении следует строить и процесс формирования обобщенных приемов решения уравнений в школьном курсе алгебры. В курсе математики старших классов учащиеся сталкиваются с новыми классами уравнений, систем или с углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную систему знаний, умений и навыков; они дополняют ее новым фактическим содержанием.

Обобщение способов деятельности учащихся при решении квадратных уравнений происходит постепенно. Можно выделить следующие этапы при изучении темы "Квадратные уравнения":

Страницы: 1 2 3 4 5


Читайте также:

Основные направления словарной работы в начальной школе
Методика развития речи на лексическом уровне пре­дусматривает четыре основные направления: 1. Обогащение словаря, т.е. усвоение новых, ранее не­известных учащимся слов, а также новых значений тех слов, которые уже имелись в словарном запасе. Это до­стигается средством прибавления к словарю ребенка ...

Разработка уроков по теме "Полные квадратные уравнения"
Урок-программирование по теме " Полные квадратные уравнения" (уравнения общего вида) Тип урока: изучение новой темы. Цели урока: ввести понятие полного квадратного уравнения, научить учащихся решать полные квадратные уравнения, развивать математическую речь, внимание, самостоятельность. О ...

Выявление стилей педагогического общения у учителей – предметников
Констатирующее исследование стилей педагогического общения тесно связано с формирующими процессами, проводимыми на диагностической основе. В исследовательской работе использовались следующие методы: Теоретический анализ психолого-педагогической литературы по проблематике. Наблюдение за ходом урока. ...

Актуальное на сайте

Copyright © 2026 - All Rights Reserved - www.rawpedagogy.ru