Методика изучения квадратных уравнений

Страница 1

С началом изучения систематического курса алгебры основное внимание уделяется способам решения квадратных уравнений, которые становятся специальным объектом изучения. Для изучения данной темы по программе для общеобразовательных учреждений отводится 26 часов [8, 151]. Основная цель - выработать умения решать квадратные уравнения и решать задачи, сводящиеся к ним.

Квадратным уравнением называется уравнение вида bx + c = 0, где х - переменная, а, b и с - некоторые числа, причем а . Числа а, b и с - коэффициенты квадратного уравнения [1, 98].

Умение решать квадратные уравнения служит базой для решения других типов уравнений и их систем (дробных рациональных, иррациональных, высших степеней).

Для того чтобы решить любое квадратное уравнение, учащиеся должны знать:

формулу нахождения дискриминанта;

формулу нахождения корней квадратного уравнения;

алгоритмы решения уравнений данного вида.

В результате изучения данной темы учащиеся должны уметь:

решать неполные квадратные уравнения;

решать полные квадратные уравнения;

решать приведенные квадратные уравнения;

находить ошибки в решенных уравнениях и исправлять их;

делать проверку.

Решение каждого уравнения складывается из двух основных частей:

преобразования данного уравнения к простейшим;

решения уравнений по известным правилам, формулам или алгоритмам.

При изучении темы "Квадратные уравнения" рассматриваются неполные, полные и приведенные квадратные уравнения. Для изучения данной темы были проанализированы современные школьные учебники разных авторов, таких как А.Г. Мордкович, С.М. Никольский, Ю.Н. Макарычев, М.И. Башмаков (Приложение 6)

Можно сделать следующие выводы:

1) во всех современных школьных учебниках алгебры методическая линия изучения квадратных уравнений одинакова.

2) в учебнике под ред.М.И. Башмакова дается историческая справка, а в других учебниках этого нет.

3) в учебниках алгебры С.М. Никольского и Ю.Н. Макарычева при изучении темы "Квадратные уравнения" рассматриваются прямая и обратная теорема Виета.

Обучение решению уравнений начинается с простейших их видов, и программа [5,131] обусловливает постепенное накопление как их видов, так и "фонда" тождественных и равносильных преобразований, с помощью которых можно привести произвольное уравнение к простейшим. В этом направлении следует строить и процесс формирования обобщенных приемов решения уравнений в школьном курсе алгебры. В курсе математики старших классов учащиеся сталкиваются с новыми классами уравнений, систем или с углубленным изучением уже известных классов. Однако это мало влияет на уже сформированную систему знаний, умений и навыков; они дополняют ее новым фактическим содержанием.

Обобщение способов деятельности учащихся при решении квадратных уравнений происходит постепенно. Можно выделить следующие этапы при изучении темы "Квадратные уравнения":

Страницы: 1 2 3 4 5


Читайте также:

Содержание, формы и методы обучения учащихся VII-VIII классов при освоении технологических операций на токарно-винторезном станке
В первой главе квалификационной работы нами были раскрыты теоретические основы обучения учащихся VII-VIII классов при освоении технологических операций на токарно-винторезных станках, выявлены исходные предпосылки формирования у учащихся необходимых знаний, умений и навыков в программном содержании ...

Определение уровня развития изобразительной деятельности детей раннего возраста в ДОУ «Малыш»
Изучив теоретические вопросы развития восприятия детей раннего возраста в предметной деятельности, лллмы перешли к экспериментальной работе, которая состоит из 3 последующих этапов эксперимента: констатирующего, формирующего и контрольного. Экспериментальное исследование было организованно на базе ...

Диагностика коммуникативных умений у младших школьников
С целью изучения уровня развития коммуникативных качеств младших школьников нами было проведено исследование на базе школы №2 г. Михайловки в течение учебного года. В эксперименте приняли участие девочки и мальчики 2-го класса, в количестве 20 человек. Исследование проводилось в три этапа. На перво ...

Актуальное на сайте

Copyright © 2025 - All Rights Reserved - www.rawpedagogy.ru