На втором этапе осуществляется переход к решению полного квадратного уравнения. Это уравнения вида ах2 + bx + c = 0, где a,b,c - заданные числа, а ≠ 0, х - неизвестное.
Любое полное квадратное уравнение можно преобразовать к виду
, для того, чтобы определять число корней квадратного уравнения и находить эти корни. Дискриминант уравнения равен: D = p2 - 4q. Рассматриваются следующие случаи решения полных квадратных уравнений: D < 0, D = 0, D > 0.
1. Если D < 0, то квадратное уравнение ах2 + bx + c = 0, где а ≠ 0 не имеет действительных корней. Например, 2х2 + 4х + 7 = 0. Решение: здесь а = 2, b = 4, с = 7. D = b2 - 4ас = 42 -
= 16 - 56 = - 40. Так как D < 0, то данное квадратное уравнение не имеет действительных корней.
2. Если D = 0, то квадратное уравнение ах2 + bx + c = 0, где а ≠ 0, имеет два равных корня, которые находятся по формуле
.
Например, 4х
- 20х + 25 = 0. Решение: а = 4, b = - 20, с = 25. D = b2 - 4ас = (-20) 2 -
= 400 - 400 = 0. Так как D = 0, то данное уравнение имеет два равных корня, которые находятся по формуле
. Значит,
3. Если D > 0, то квадратное уравнение ах2 + bx + c = 0, где а ≠ 0 имеет два корня, которые находятся по формулам:
;
(1)
Например, 3х2 + 8х - 11 = 0. Решение: а = 3, b = 8, с = - 11. D = b2 - 4ас = 82 -
(-11) = 64 + 132 = 196. Так как D > 0, то данное квадратное уравнение имеет два корня. Эти корни находятся по формулам:
.
Составляется алгоритм решения уравнения вида ах2 + bx + c = 0.
Вычислить дискриминант D по формуле D = b2 - 4ас.
2. Если D < 0, то квадратное уравнение ах2 + bx + c = 0 не имеет корней.
3. Если D = 0, то квадратное уравнение имеет два равных корня, который находятся по формуле
4. Если D > 0, то квадратное уравнение ах2 + bx + c = 0 имеет два корня:
;
.
Это алгоритм универсален, он применим как к неполным, так и к полным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому алгоритму не решают.
Математики - люди практичные, экономные, поэтому пользуются формулой:
. (2)
Итак, можно сделать вывод, что квадратные уравнения можно решать подробно, используя сформулированное выше правило; можно - записать сразу формулу (2) и с ее помощью делать необходимые выводы [1,98].
Читайте также:
Сочетаемостные возможности слова. Мотивированные и немотивированные слова
Словарный состав русского языка представляет собой определенную систему, так как слова в нем находятся в разнообразных связях. Будучи обозначениями предметов и явлений объективной действительности, словарные единицы прежде всего отражают связи, существующие между предметами и явлениями самой де ...
Понятие «Досуг», «Девиантного поведения», «Реабилитация»
Досуг-это свободное от работы и учебы время, остающееся за вычетом разного рода непреложных, необходимых затрат. реабилитация это система мероприятий, направленных на восстановление полноценного общественного бытия личности. Девиантное поведение – (от английского.deviation-отклонение) – совершение ...
Комментированное чтение
как традиционный приём работы на уроках литературы
Термин «комментированное чтение» вошел в литературу вначале как определение приема обучения и получил более широкое истолкование несколько позже, когда некоторые авторы (Г.И. Беленький, М.А. Шнеерсон и др.) вынесли его в оглавление своих исследований, освещающих целостный анализ, в котором существе ...