Методика изучения квадратных уравнений

Страница 2

I этап - "Решение неполных квадратных уравнений".

II этап - "Решение полных квадратных уравнений".

III этап - "Решение приведенных квадратных уравнений".

На первом этапе рассматриваются неполные квадратные уравнения. Так как сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Это уравнения вида: ах2 = 0, ах2 + с = 0, где а ≠ 0 и с≠ 0, ах2 + bх = 0, где а ≠ 0 и

b ≠ 0. Рассмотрим решение несколько таких уравнений:

1. Если ах2 = 0. Уравнения такого вида решаются по алгоритму:

1) найти х2;

2) найти х.

Например, 5х2 = 0. Разделив обе части уравнения на 5 получается: х2 = 0, откуда х = 0.

2. Если ах2 + с = 0, с ≠ 0 Уравнения данного вида решаются по алгоритму:

1) перенести слагаемые в правую часть;

2) найти все числа, квадраты которых равны числу с.

Например, х2 - 5 = 0, Это уравнение равносильно уравнению х2 = 5. Следовательно, надо найти все числа, квадраты которых равны числу 5. Таких чисел только два и - . Таким образом, уравнение х2 - 5 = 0 имеет два действительных корня: x1 =, x2 = - и других действительных корней не имеет.

3. Если ах2 + bх = 0, b ≠ 0. Уравнения такого вида решаются по алгоритму:

1) вынести общий множитель за скобки;

2) найти x1, x2.

Например, х2 - 3х = 0. Перепишем уравнение х2 - 3х = 0 в виде х (х - 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х - 3) = 0 получится число, не равное нулю.

Итак, данные примеры показывают, как решаются неполные квадратные уравнения:

1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;

2) если уравнение имеет вид ах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b = 0. В итоге получается два корня: x1 = 0; x2 = - ;

3) если уравнение имеет вид ах2 + с = 0, то его преобразуют к виду

ах2 = - с и далее х2. = - В случае, когда - < 0, уравнение х2 = - не имеет действительных корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда - > 0, т.е. - = m, где m>0, уравнение х2 = m имеет два корня = , = - , в этом случае допускается более короткая запись = . Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.

Страницы: 1 2 3 4 5


Читайте также:

История исследования проблемы толерантности
Проблема толерантности является предметом изучения философии, социологии, психологии, этнографии, истории, религиоведения, культурологи и др. наук. Для педагогики она приобрела особое значение в последнее десятилетие в условиях гуманистического воспитания. Для истории педагогики идея толерантности ...

Роль и место раздела «Домашняя экономика» в образовательной области «Технология», 8 класс
«Домашней экономика» - изучается в 8 классе (8 часов). Как известно, первоначальные понятия о домашней экономике учащиеся осваивают в семье, школе, окружающей среде, при выполнении проектов. Семья – это общество в миниатюре, она развивается по тем же экономическим законам, что и общество, а, потому ...

Педагогические условия возникновения и развития изобразительной деятельности детей раннего возраста
Дети очень рано начинают проявлять интерес к изобразительной деятельности. Их привлекают не только действия с изобразительными материалами, но и результаты этой деятельности. Малыша восхищает след от карандаша, измененная форма пластилина, в них он видит знакомые образы окружающего мира. Активизиру ...

Актуальное на сайте

Copyright © 2020 - All Rights Reserved - www.rawpedagogy.ru