Методика изучения квадратных уравнений

Страница 2

I этап - "Решение неполных квадратных уравнений".

II этап - "Решение полных квадратных уравнений".

III этап - "Решение приведенных квадратных уравнений".

На первом этапе рассматриваются неполные квадратные уравнения. Так как сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Это уравнения вида: ах2 = 0, ах2 + с = 0, где а ≠ 0 и с≠ 0, ах2 + bх = 0, где а ≠ 0 и

b ≠ 0. Рассмотрим решение несколько таких уравнений:

1. Если ах2 = 0. Уравнения такого вида решаются по алгоритму:

1) найти х2;

2) найти х.

Например, 5х2 = 0. Разделив обе части уравнения на 5 получается: х2 = 0, откуда х = 0.

2. Если ах2 + с = 0, с ≠ 0 Уравнения данного вида решаются по алгоритму:

1) перенести слагаемые в правую часть;

2) найти все числа, квадраты которых равны числу с.

Например, х2 - 5 = 0, Это уравнение равносильно уравнению х2 = 5. Следовательно, надо найти все числа, квадраты которых равны числу 5. Таких чисел только два и - . Таким образом, уравнение х2 - 5 = 0 имеет два действительных корня: x1 =, x2 = - и других действительных корней не имеет.

3. Если ах2 + bх = 0, b ≠ 0. Уравнения такого вида решаются по алгоритму:

1) вынести общий множитель за скобки;

2) найти x1, x2.

Например, х2 - 3х = 0. Перепишем уравнение х2 - 3х = 0 в виде х (х - 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х - 3) = 0 получится число, не равное нулю.

Итак, данные примеры показывают, как решаются неполные квадратные уравнения:

1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;

2) если уравнение имеет вид ах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b = 0. В итоге получается два корня: x1 = 0; x2 = - ;

3) если уравнение имеет вид ах2 + с = 0, то его преобразуют к виду

ах2 = - с и далее х2. = - В случае, когда - < 0, уравнение х2 = - не имеет действительных корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда - > 0, т.е. - = m, где m>0, уравнение х2 = m имеет два корня = , = - , в этом случае допускается более короткая запись = . Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.

Страницы: 1 2 3 4 5


Читайте также:

Экспериментальное исследование использования сюжетно-ролевой игры для формирования гуманистистической направленности отношения к миру детей
Базой для проведения экспериментальной работы стал детский сад 28 г.Прокопьевска. Исследование проводилось в старшей группе. В эксперименте участвовало 10 детей в возрасте от 5 до 6 лет. Задача исследования заключалась в том, чтобы проанализировать возможности использования сюжетно-ролевой игры для ...

Изобразительная деятельность как способ развития творческого воображения
Вот уже почти столетие детское рисование вызывает интерес многочисленных исследователей. Представители различных наук подходят к изучению детского рисунка с разных сторон. Искусствоведы стремятся заглянуть в истоки творчества. Психологи через детское рисование ищут возможность проникнуть в своеобра ...

Использование дидактических игр как средства развития интеллекта дошкольников
Игра - основной вид деятельности ребёнка в дошкольном возрасте, играя, он познаёт мир людей, играя, ребёнок развивается. В современной педагогике существует огромное количество развивающих игр, способных развить сенсорные, двигательные, интеллектуальные способности ребёнка. Прежде чем говорить о ра ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru