I этап - "Решение неполных квадратных уравнений".
II этап - "Решение полных квадратных уравнений".
III этап - "Решение приведенных квадратных уравнений".
На первом этапе рассматриваются неполные квадратные уравнения. Так как сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать. Это уравнения вида: ах2 = 0, ах2 + с = 0, где а ≠ 0 и с≠ 0, ах2 + bх = 0, где а ≠ 0 и
b ≠ 0. Рассмотрим решение несколько таких уравнений:
1. Если ах2 = 0. Уравнения такого вида решаются по алгоритму:
1) найти х2;
2) найти х.
Например, 5х2 = 0. Разделив обе части уравнения на 5 получается: х2 = 0, откуда х = 0.
2. Если ах2 + с = 0, с ≠ 0 Уравнения данного вида решаются по алгоритму:
1) перенести слагаемые в правую часть;
2) найти все числа, квадраты которых равны числу с.
Например, х2 - 5 = 0, Это уравнение равносильно уравнению х2 = 5. Следовательно, надо найти все числа, квадраты которых равны числу 5. Таких чисел только два
и -
. Таким образом, уравнение х2 - 5 = 0 имеет два действительных корня: x1 =
, x2 = -
и других действительных корней не имеет.
3. Если ах2 + bх = 0, b ≠ 0. Уравнения такого вида решаются по алгоритму:
1) вынести общий множитель за скобки;
2) найти x1, x2.
Например, х2 - 3х = 0. Перепишем уравнение х2 - 3х = 0 в виде х (х - 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х - 3) = 0 получится число, не равное нулю.
Итак, данные примеры показывают, как решаются неполные квадратные уравнения:
1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;
2) если уравнение имеет вид ах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b = 0. В итоге получается два корня: x1 = 0; x2 = -
;
3) если уравнение имеет вид ах2 + с = 0, то его преобразуют к виду
ах2 = - с и далее х2. = -
В случае, когда -
< 0, уравнение х2 = -
не имеет действительных корней (значит, не имеет корней и исходное уравнение ах2 + с = 0). В случае, когда -
> 0, т.е. -
= m, где m>0, уравнение х2 = m имеет два корня
=
,
= -
, в этом случае допускается более короткая запись
=
. Таким образом, неполное квадратное уравнение может иметь два корня, один корень, ни одного корня.
Читайте также:
Практическое использование нетрадиционных форм работы с
родителями в дошкольном учреждении
Практическая работа по внедрению нетрадиционных форм работы с родителями проводилась на базе ДОУ №96 «Умничка». Работа проводилась в течение всего года с родителями подготовительной группы. В начале года была проанализирована психолого-педагогическая литература по данной проблеме. Работу начали с и ...
Мультимедиа-технологии как предмет научного рассмотрения
Научное рассмотрение появившихся в прошлом столетии и распространяющихся по сей день новых информационных технологий и проблемы их практического применения в различных сферах, в том числе, в сфере образования, началось в конце XX века – вследствие, собственно, рождения этих технологий. Бурное распр ...
Обучение на расстоянии - что это такое
В современных социально- экономических условиях возможность получения заочного и вечернего образования очень важна. Не менее важной является задача переподготовки и повышения квалификации, и здесь дистанционное образование является незаменимым механизмом получения качественного образования. Информа ...