Задача Дидоны.(на примере параллелограммов). (для учащихся по учебнику Атанасяна Л.С. и др.)
На последнем занятии посмотрим, какой все-таки участок приобрела Дидона. Легенда состояла в следующем:
В IX в. до н.э. финикийская царевна Дидона, спасаясь от преследований своего брата, отправилась на запад вдоль берегов Средиземного моря искать себе прибежище, ей приглянулось одно место на побережье Тунисского залива. Дидона повела переговоры с местным предводителем Ярбом о продаже земли. Запросила она участок совсем небольшой — "столько, сколько можно окружить бычьей шкурой". Дидоне удалось уговорить Ярба, и сделка состоялась. Тогда Дидона изрезала шкуру быка на мелкие тесемки, связала их воедино и окружила большую территорию, на которой основала крепость и город Карфаген.
Задачу по отысканию среди всех замкнутых кривых с данным периметром той, которая охватывает максимальную площадь, называют задачей Дидоны.
Задача Дидоны формулируется в таком виде: "у какой фигуры Р, при заданном периметре, площадь будет наибольшей?"
Рассмотрим данную задачу на примере параллелограммов.
Рассмотрим различные виды параллелограммов с равными длинами сторон.
Поскольку площадь параллелограмма равна а*b*sin a^b, то наибольшая площадь получается, если sin a^b=0, то есть угол прямой. То есть наибольшую площадь имеет прямоугольник.
Рассмотрим различные виды прямоугольников:
Это все участки прямоугольной формы с периметром р. Какой из них будет иметь наибольшую площадь?
Для начала, допустим, что верёвка получилась длиной 100м, тогда
Если одна из сторон – х, То другая- 50-х.
Подсчитав площадь, получим:
Х(50-х) = 50х-х2 = 625-(х2-50х+625) = 625-(25-х)2
Разность будет наибольшей, если (25-х)2=0, т.е х=25, т.е если четырехугольник- квадрат.
Теперь рассмотрим общий случай, когда периметр р.
Если одна из сторон – х, То другая- -х.
Подсчитав площадь, получим:
Х(-х) =
х-х2 = (
)2-(х2-
х+(
)2) = (
)2-(
-х)2
Разность будет наибольшей, если (-х)2=0, т.е х=
, т.е если четырехугольник - квадрат.
Таким образом получается, что из всех параллелограммов с одинаковым периметром наибольшую площадь имеет квадрат.
• Начинать применять задачи с геометрическими параметрами можно уже с самого раннего периода изучения геометрии.
• Применение подобных задач не позволяет ученикам "закостенеть" в своих умениях и навыках применения геометрических знаний.
• Задачи с геометрическими параметрами носят творческий характер и не могут быть включены в обязательный минимум; их необходимо отнести к задачам "продвинутого" уровня.
Чаще всего ученику по-настоящему подумать на уроке просто некогда. Уроки идут по схеме: "разогрев" учащихся, проверка домашнего задания, повторение пройденного на прошлых уроках, объяснение нового материала, первичное закрепление, применение полученных знаний при решении задач с привлечением ранее изученного материала. Ограниченность учителя временными рамками урока (нужно успеть сделать всё запланированное) и временем изучения темы (нужно помнить, что опоздание на этом уроке повлечет дальнейшее отставание), нацеленность учителя и ученика на достижение ближайших целей (успешно написать самостоятельную или контрольную работу, сдать зачет) — всё это никак не способствует появлению на уроке задач творческого или трудного в техническом плане характера. Тем не менее, именно такие задачи дают возможность ученику глубже понять изучаемый материал, увидеть "изюминку" в решении геометрических задач.
Читайте также:
Национальная нетерпимость и ее причины
Люди обыкновенно думают, что их восприятия и представления о вещах совпадают, и если два человека воспринимают один и тот же предмет по-разному, то один из них определенно ошибается. Однако психологическая наука отвергает это предположение. Восприятие даже простейшего объекта - не изолированный акт ...
Критерии эффективности
личностно-ориентированного урока
Существует множество подходов к анализу урока, его оценке. В зависимости от целей урока, его функций, опыта работы учителя, включая характер его взаимоотношений с учениками (а он у каждого свой, ведь учитель — тоже личность!), необходимо выбрать разные критерии оценки урока. Урок — та учебная ситуа ...
Концепция "Воспитание петербуржца XXI века"
Санкт-Петербург называют культурной столицей России. И это вполне заслуженно. Именно в этом городе сосредоточено самое большие количество музеев, парков и памятников архитектуры. Город и по сей день поражает приезжих своим великолепием. Однако такая роскошь была достигнута высокой ценой. Район, где ...