Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе"

Современное образование » Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе"

Страница 3

Случай деления на 0 не рассматривается.

Решение рациональных уравнений.

Гипербола, график гиперболы.

Случай 0 в знаменателе не рассматривается.

Алимов Ш. А. «Алгебра 9»

Функция, область определения функции.

Элементы тригонометрии. Пример применения темы:

Повторение – решение уравнений. Примеры:

Мордкович А. Г. «Алгебра 9»

Рациональные неравенства

Системы уравнений

Функция, область определения

Функция и её график.

Тригонометрические функции.

Анализ приведенного материала

Проанализировав основные учебники, можно сделать вывод, что во всех учебниках 8 класса тема «рациональные уравнения» излагается довольно полно, однако, пропедевтика этой темы не приводится на достаточном уровне ни в одном учебнике. Отсюда у учащихся непонимание логики решения уравнений данного вида, формальный подход к их решению. Кроме того, в связи с частым использованием подобных уравнений в последующих темах, также необходимо повторение темы в 9 классе, которое в учебниках также мало представлено.

Темы, в которых затрагивается изучаемый раздел:

Введение операции деления

Изучение операций с дробями, основное свойство дроби.

Деление целых чисел

Деление рациональных чисел

Уравнения с 1 переменной и его корни

Функция, график функции: нахождение области определения функции

Выражения с переменными

Рациональные дроби и их свойства, деление дробей

Функция «обратная пропорциональность»

Решение дробных рациональных уравнений

Элементы тригонометрии

Рациональные неравенства

Системы уравнений

Обзор методов изучения темы

Метод - умножения дробей на их общий знаменатель.

Для примера решим дробное рациональное уравнение

(1)

Умножим обе части уравнения на общий знаменатель дробей, т е на выражение . Получим целое уравнение

.(2)

Понятно, что каждый корень уравнения (1) является корнем уравнения (2). Но уравнение (2) может быть не равносильно исходному, так как мы умножили обе его части не на число, отличное от нуля, а на выражение, содержащее переменную, которое может обращаться в 0. Поэтому каждый корень уравнения (2) обязательно окажется корнем уравнения (1).

Страницы: 1 2 3 4 5 6 7 8


Читайте также:

Основные направления реформы образования
Термин "реформа" произошёл от латинского слова "reformo"– преобразовываю и в словарном толковании означает преобразование, изменение, переустройство общественной жизни, не уничтожающее основ существующей социальной структуры, нововведение любого содержания в той или иной мере св ...

Повесть А.С. Пушкина «Капитанская дочка» в школьном изучении
Повесть А.С. Пушкина «Капитанская дочка» почти в течение столетия входит в программу обучения школьников. В настоящее время в школах с русским языком обучения в Кыргызской Республике повесть «Капитанская дочка» изучается по учебнику для восьмого класса Г.И. Беленького, который первоначально был изд ...

Связь педагогики с другими науками и ее структура
Место педагогики в системе наук о человеке может быть выявлено в процессе рассмотрения ее связей с другими науками. В течение всего периода своего существования она была тесно связана со многими науками, которые оказывали неоднозначное влияние на ее становление и развитие. Некоторые из этих взаимос ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru