Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе"

Современное образование » Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе"

Страница 6

Необходимо подчеркнуть, что здесь для нас существенным является тот факт, что выражение g(х) имеет смысл при любом х. В общем случае уравнение вида равносильно системе

Например, уравнение

равносильно системе

т. е. cистеме

Следует заметить, что при решении системы где

f(х) и g(х) — некоторые многочлены, вовсе не обязательно находить множество значений х, при которых Достаточно, найдя

корни уравнения , проверить, удовлетворяют ли они условию

В учебниках метод решения уравнений вида , где

f(х) и g(х) — целые выражения, разъясняется на примере уравнения

,

равносильного системе

.Учащиеся

не могут найти множество значений х при которых х 3— х — 1200, но этого и не требуется для решения системы. Непосредственная подстановка убеждает их, что из двух корней уравнения х2 — 5х = 0, равных 0 и 5, только первый удовлетворяет условию Значит, рассматриваемая система, а следовательно и уравнение

,

имеет единственное решение — число 0.

При решении уравнения вида r(х) = р(х), где r(х) и р(х) — рациональные выражения, можно не сводить его к уравнению r(х) — р(х) = 0, а представить выражения r(х) и р(х) в виде дробей с одинаковыми знаменателями. Если при этом не выполнялись тождественные преобразования, которые могут привести к нарушению равносильности, то получится уравнение вида

,

где т(х), п(х), q(х) — целые выражения, равносильные уравнению r(х) = р(х). Уравнение указанного вида равносильно системе

Равносильность этих предложений можно доказать, опираясь на свойство числовых дробей: дроби с одинаковыми знаменателями равны тогда и только тогда, когда их числители равны, а общий знаменатель отличен от 0 (выражение q(х) имеет смысл при любом значении х).

Страницы: 1 2 3 4 5 6 7 8 9 10


Читайте также:

Педагогические идеи В.А. Сухомлинского
“Глубоко уважая науку и ученых, я всегда считал себя только практиком, народным учителем”, - писал В. А. Сухомлинский. Эту мысль он сформулировал за несколько лет до смерти, когда уже пользовался репутацией одного из ведущих деятелей советской педагогики. "Многолетний опыт дает мне право утвер ...

Контроль знаний учащихся как основной элемент оценки качества знаний
Контроль знаний учащихся является одним из основных элементов оценки качества образования. Учителя ежедневно контролируют учебную деятельность учащихся путем устных опросов в классе и путем оценки письменных работ. Эта неформальная оценка, которая преследует чисто педагогическую цель в рамках деяте ...

Методы организации обучения с применением персонального компьютера
В практике обучения могут применяться четыре основных метода обучения: объяснительно-иллюстративный репродуктивный проблемный исследовательский Учитывая, что первый метод не предусматривает наличия обратной связи между учеником и системой обучения, его использование в системах с использованием ПК б ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru