Это задание требует знания определения дроби, в котором заложено отличие знаменателя от 0, правила деления дробей, а также факта невозможности деления на 0, доказанного в предыдущем пункте.
В качестве дополнительных заданий, а также для повторения темы «Дроби» можно использовать выражения вида:
с формулировкой «Найти такие цифры x,y,z, что…».
Деление целых чисел
Тема изучается в 6 классе, по этому, требует повторения определения операции деления. Рекомендации те же, что для предыдущей темы – рассмотреть всевозможные случаи, в которых встречается 0, их, конечно, меньше, чем при делении дробей. Примеры: 0:2, 4:0, 0:0, обосновать результат, показать, почему на 0 делить нельзя.
Деление рациональных чисел
Тема схожа с делением дробей, с той разницей, что изучается она в 6 классе. Рекомендации те же, что в теме «Деление дробей».
Уравнения с 1 переменной и его корни
Не смотря на то, что случай переменной в знаменателе здесь еще не используется, следует обратить внимание учащихся на действия с уравнениями, а именно: «Если обе части уравнения умножить или разделить на одно и то же отличное от 0 число, то получится уравнение, равносильное данному».
Для закрепления можно использовать упражнения вида: «Равносильны ли уравнения»
|
5x=7 и (15-10)x=7+5x |
17x-2=10x+4 и 0+7x=6 |
Также следует уделить внимание предупреждению основных ошибок, встречающихся при работе с уравнениями, а именно:
При разложении на множители способом вынесения общего множителя за скобки один из полученных сомножителей всегда будет многочленом, состоящим из того же числа членов, что и данный. Пример ошибки:
. Решение проблемы – подробное следование алгоритму разложения на множители.
С распределительным законом умножения относительно сложения связана ошибка такого рода:
. Причина – перенос распределительного закона, связывающего умножение со сложением на связь деления со сложением.
Еще одна ошибка связана с применением ассоциативного закона к неассоциативным операциям:
.
Возможность появления этих ошибок следует учитывать при работе со всеми видами уравнений, неравенств, а также с многочленами.
Функция, график функции: нахождение области определения функции
В этой теме необходимо пояснить нахождение области определения и вид графика функции при наличии переменной в знаменателе. Несмотря на то, что обратная пропорциональность и парабола еще не изучаются, их график школьники построить уже могут – с помощью таблицы.
Пример для рассмотрения: найти область определения функции и построить её график.
Область определения школьники найдут без труда, если перед этим актуализировать знания о делении и дробях, а с построением графика функции у них возникнут сложности. Решение проблемы:
Читайте также:
Личность специалиста по социальной реабилитации детей с ограниченными возможностями
здоровья
Деятельность специалиста, занимающегося социальной реабилитацией, включает в себя две основные характеристики: объективную и субъективную, являющиеся необходимыми предпосылками эффективности его труда. К объективным характеристикам относятся знания и умения, которыми он обладает, а также результаты ...
Приёмы обучения разговорной диалогической эвенской речи учащихся начальных
классов
При обучении эвенскому языку детей особое значения приобретает выбор методических приемов проведение разговорных уроков. Чем разнообразнее интереснее будут приемы, активизирующие изучаемый языковой материал тем легче и лучше овладевают дети эвенским языком. Овладение новым языком представляет собой ...
Формы организации воспитательной работы по проблеме
Нравственное воспитании младших школьников является целенаправленным воспитательным процессом, предполагающим определённую систему содержания, форм, методов и приёмов педагогических действий. Решение проблем нравственного воспитания в моём опыте осуществляется через такие широко известные активные ...