Упростив уравнение (2), получим квадратное уравнение
Его корни – числа -2 и 5.
Проверим, являются ли они корнями уравнения (1). При общий знаменатель
не обращается в 0. Значит, число -2 – корень уравнения(1).
Итак, корнем уравнения (1) служит только число -2.
Вообще, при решении дробных уравнений целесообразно поступать следующим образом:
Найти общий знаменатель дробей, входящих в уравнение;
Умножить обе части уравнения на общий знаменатель;
Решить получившееся целое уравнение;
Исключить из его корней те, которые обращают в 0 общий знаменатель.
Метод, использующий равенство дроби 0.
Начнем с примера. Пусть требуется решить уравнение
(1)
Перенесем выражение в левую часть уравнения с противоположным знаком, т. е. прибавим к обеим частям уравнения по
и разность
в правой части уравнения заменим нулем. Получим уравнение
(2)
Может ли при переходе от уравнения (1) к уравнению (2) произойти потеря или приобретение корней?
Очевидно, что так как разность тождественно равна 0 на множестве тех значений у, при которых
то мы могли бы приобрести новые корни за счет значений у, обращающих в нуль выражение
Но они не могут служить корнями уравнения (2), так как при этих значениях выражение
, входящее в качестве слагаемого в левую часть уравнения (2), теряет смысл.
Рассуждая аналогично, мы можем показать, что вообще уравнение r(х) = р(х), где r(х) и р(х) — рациональные выражения, причем хотя бы одно из них дробное, равносильно уравнению r(х) —p(x)=0
Вернемся к рассматриваемому примеру. Представив теперь cумму дробей в виде отношения двух многочленов, получим уравнение
(3)
Так как в результате преобразования суммы дробей в дробь мы получили выражение с той же областью определения и тождественно равное исходному выражению на этой области, то уравнение (3) равносильно уравнению (2), а следовательно, и уравнению (1).
Всякое ли преобразование дробного выражения r(х) — p(х) в дробь, числитель и знаменатель которой многочлены, позволяем от уравнения r(х) — р(х) = 0 перейти к равносильному уравнению вида , где f (х) и g (х) — многочлены?
Рассмотрим примеры.
Пример 1. Заменив в уравнении
(4)
Читайте также:
Формы организации воспитательной работы по проблеме
Нравственное воспитании младших школьников является целенаправленным воспитательным процессом, предполагающим определённую систему содержания, форм, методов и приёмов педагогических действий. Решение проблем нравственного воспитания в моём опыте осуществляется через такие широко известные активные ...
Разработка уроков по теме "Неполные квадратные
уравнения"
Урок - лекция по теме "Неполные квадратные уравнения" Тип урока: изучение новой темы. Цели урока: ввести понятие квадратного и неполного квадратного уравнения; показать решения неполных квадратных уравнений; формировать умение решать неполные квадратные уравнения; развивать математическую ...
Психолго-педагогические основы развития речи младших школьников
Одна из функций речи состоит в оформлении мысли, в ее выражении. «Внешняя речь,— как средство писал Л. С. Выготский,— есть процесс превращения мысли в слова, ее материализация» . Следовательно, психологической основой речи служит мысль и условием ее развития является обогащение мысли. Лишь на осн ...