Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе"

Современное образование » Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе"

Страница 4

Упростив уравнение (2), получим квадратное уравнение

Его корни – числа -2 и 5.

Проверим, являются ли они корнями уравнения (1). При общий знаменатель не обращается в 0. Значит, число -2 – корень уравнения(1).

Итак, корнем уравнения (1) служит только число -2.

Вообще, при решении дробных уравнений целесообразно поступать следующим образом:

Найти общий знаменатель дробей, входящих в уравнение;

Умножить обе части уравнения на общий знаменатель;

Решить получившееся целое уравнение;

Исключить из его корней те, которые обращают в 0 общий знаменатель.

Метод, использующий равенство дроби 0.

Начнем с примера. Пусть требуется решить уравнение

(1)

Перенесем выражение в левую часть уравнения с противоположным знаком, т. е. прибавим к обеим частям уравнения по и разность в правой части уравнения заменим нулем. Получим уравнение

(2)

Может ли при переходе от уравнения (1) к уравнению (2) произойти потеря или приобретение корней?

Очевидно, что так как разность тождественно равна 0 на множестве тех значений у, при которых то мы могли бы приобрести новые корни за счет значений у, обращающих в нуль выражение Но они не могут служить корнями уравнения (2), так как при этих значениях выражение , входящее в качестве слагаемого в левую часть уравнения (2), теряет смысл.

Рассуждая аналогично, мы можем показать, что вообще уравнение r(х) = р(х), где r(х) и р(х) — рациональные выражения, причем хотя бы одно из них дробное, равносильно уравнению r(х) —p(x)=0

Вернемся к рассматриваемому примеру. Представив теперь cумму дробей в виде отношения двух многочленов, получим уравнение

(3)

Так как в результате преобразования суммы дробей в дробь мы получили выражение с той же областью определения и тождественно равное исходному выражению на этой области, то уравнение (3) равносильно уравнению (2), а следовательно, и уравнению (1).

Всякое ли преобразование дробного выражения r(х) — p(х) в дробь, числитель и знаменатель которой многочлены, позволяем от уравнения r(х) — р(х) = 0 перейти к равносильному уравнению вида , где f (х) и g (х) — многочлены?

Рассмотрим примеры.

Пример 1. Заменив в уравнении

(4)

Страницы: 1 2 3 4 5 6 7 8 9


Читайте также:

Профессиональная компетентность специалиста по социальной реабилитации детей с ограниченными возможностями здоровья
Компетенция (от лат. competere — добиваться, соответствовать, подходить). Профессионально компетентным считается такой труд, в котором на высоком уровне выполняются функциональные обязанности, используются специальные и общекультурные знания и умения, наиболее полно раскрываются профессиональные сп ...

Принципы построения развивающей среды в условиях ДОУ
В. А. Петровский, Л. П. Стрелкова, Л. М. Кларина, Л. А. Смывина и др. разработали Концепцию построения развивающей среды для организации жизни детей и взрослых в детском саду, в которой определены принципы личностно-ориентированной модели построения развивающей среды в дошкольном образовательном уч ...

Теоретический анализ основных математических понятий
Понятие произведения целых неотрицательных чисел может быть определено по-разному. Рассмотрим сначала подход, в основе которого лежит понятие суммы. Определение. Произведением целых неотрицательных чисел а и b называется такое целое неотрицательное число а·b, которое удовлетворяет следующим условия ...

Актуальное на сайте

Copyright © 2019 - All Rights Reserved - www.rawpedagogy.ru